Qualitative Reasoning about Convex Relations
نویسندگان
چکیده
Various calculi have been designed for qualitative constraintbased representation and reasoning. Especially for orientation calculi, it happens that the well-known method of algebraic closure cannot decide consistency of constraint networks, even when considering networks over base relations (= scenarios) only. We show that this is the case for all relative orientation calculi capable of distinguishing between “left of” and “right of”. Indeed, for these calculi, it is not clear whether efficient (i.e. polynomial) algorithms deciding scenario-consistency exist. As a partial solution of this problem, we present a technique to decide global consistency in qualitative calculi. It is applicable to all calculi that employ convex base relations over the real-valued space R and it can be performed in polynomial time when dealing with convex relations only. Since global consistency implies consistency, this can be an efficient aid for identifying consistent scenarios. This complements the method of algebraic closure which can identify a subset of inconsistent scenarios.
منابع مشابه
4representing and Reasoning with Qualitative Spatial Relations about Regions
This chapter surveys the work of the qualitative spatial reasoning group at the University of Leeds. The group has developed a number of logical calculi for representing and reasoning with qualitative spatial relations over regions. We motivate the use of regions as the primary spatial entity and show how a rich language can be built up from surprisingly few primitives. This language can distin...
متن کاملCombining RCC5 Relations with Betweenness Information
RCC5 is an important and well-known calculus for representing and reasoning about mereological relations. Among many other applications, it is pivotal in the formalization of commonsense reasoning about natural categories. In particular, it allows for a qualitative representation of conceptual spaces in the sense of Gärdenfors. To further the role of RCC5 as a vehicle for conceptual reasoning, ...
متن کاملEfficient Spatial Reasoning with Rectangular Cardinal Relations and Metric Constraints
In many real-world applications of knowledge representation and reasoning formalisms, one needs to cope with a number of spatial aspects in an integrated and efficient way. In this paper, we focus our attention on the so-called Rectangular Cardinal Direction calculus for qualitative spatial reasoning on cardinal relations between rectangles whose sides are parallel to the axes of a fixed refere...
متن کاملTopological Relations between Convex Regions
Topological relations between spatial objects are the most important kind of qualitative spatial information. Dozens of relation models have been proposed in the past two decades. These models usually make a small number of distinctions and therefore can only cope with spatial information at a fixed granularity of spatial knowledge. In this paper, we propose a topological relation model in whic...
متن کاملOn Distributive Subalgebras of Qualitative Spatial and Temporal Calculi
Qualitative calculi play a central role in representing and reasoning about qualitative spatial and temporal knowledge. This paper studies distributive subalgebras of qualitative calculi, which are subalgebras in which (weak) composition distributives over nonempty intersections. It has been proven for RCC5 and RCC8 that path consistent constraint network over a distributive subalgebra is alway...
متن کامل